
CHAPTER 7

STORING AND RETRIEVING
PROGRAMS AND DATA

Up to this point, we have dealt with reading data, using READ and DATA
statements, inputting data, using the INPUT statement, and printing output.
We have not discussed storing and retrieving programs or storing and retrieving
data. It seems useless to write a program, key it in, get it to work, and then
be unable to save it to run again later without keying it in again. As you write
programs to solve more complex problems with large amounts of data, you’ll
need ways to save your programs and data on some type of storage medium.
You will probably use a magnetic disk or tape.

The way this is done varies considerably from one computer to another.
Therefore, we will not attempt to present all the possible ways. The primary
concern is that you are aware that there are ways to store and retrieve both
programs and data. Your computer user’s reference manual will provide you
with detailed instructions.

STORING AND RETRIEVING PROGRAMS

First, let’s examine one method for storing a program. When storing a
program, you must have a way to reference it in order to load it to be run
again. To do this, you assign it a name. Program names are a series of
characters you choose. Depending on the computer you are using, you will
probably be limited to six or eight characters. There may also be limitations
on specific characters that can be used. Most computers require the first
character in a program name to be alphabetic.

If you are using a computer which has more than one programming
language available, you will have to specify the programming language
you wish to use. The following example shows how this might be
done.

Example:

7-1



INTRODUCTION TO PROGRAMMING IN BASIC

In the first line of the example, the computer asks what programming
language you want to use by displaying the word, SYSTEM. You enter BASIC;
then it asks if you want to retrieve an OLD program or enter a NEW one. You
enter NEW. The computer then asks for the NEW FILE NAME; you enter
MPG as the program name. The computer then responds with the message,
READY. This indicates the computer is ready for you to key in your program.
You key in your program in the same manner as you have throughout this
course.

Once you have entered the program, you key in the system command,
SAVE, which instructs the computer to store your program either on disk
or tape. The computer then responds with the message, FILE MPG SAVED.

To recall a saved program, you respond with OLD to the computer query
NEW or OLD. The computer will then ask for the program name. After you
have entered the program name, the computer loads the program into memory.
It is then available to be executed, changed, or listed.

To SAVE a program on some computers, all that is required is to key
in the program, enter the system command, SAVE, followed by the program
name enclosed in quotation marks.

Example:

This command will save the program.

7-2



Chapter 7—STORING AND RETRIEVING PROGRAMS AND DATA

STORING AND RETRIEVING DATA

The programs we have written thus far dealt with data either stored in the
program with DATA statements or input via an INPUT statement
at time of program execution. These statements may be sufficient when
handling data that is to be processed only once. However, there are times
when you will want to save your data to be used by other programs. You
are restricted in what you can do with the data when it is stored in DATA
statements in a program. It is impractical to update data or to use the same
data with different programs. It would be very time consuming to go through
all the DATA statements and make changes, or to enter all new DATA
statements each time you wanted to update and/or process the data. To
eliminate having to enter the data each time it is to be processed, it can be
stored independently on an auxiliary storage medium such as disk or tape.
This keeps the data separate from the program so that it can be used with
different programs without being rekeyed. Data stored in this manner is
called a data file.

A data file is any group of related records, such as inventory, personnel,
payroll, manhour accounting, and so on. A record is composed of data fields
which are specified areas of a record used for a particular category of data.
For example, in a parts inventory file you would have a record for each part
stocked. Each part and all the associated data about that part (part number,
part name, and unit price) would make up a record. Part number, part name,
and unit price are each a field. The following example shows a pictorial
breakdown of a file composed of records and associated fields.

Example:

You might say, “All of this is fine, but how do I create and use these
files?” Since the BASIC file processing statements are not standardized, you
will have to refer to the user’s reference manual for your computer to find
the file processing statements and their syntax. We will attempt only to deal
with the file processing statements conceptually.

Solving Problems With File Processing Statements

Suppose you were keeping track of an inventory file for an auto parts store.
You would need to create a file which would contain a record for each part
in the inventory. This type of file is called a master file. Each record will
contain the part number, part name, on-hand quantity, unit price, and reorder

7-3



INTRODUCTION TO PROGRAMMING IN BASIC

point (stock level). The flowchart in figure 7-1 describes one procedure that
could be used to create the master file.

Before you can write data records to a storage medium, you usually have
to set up the file. Most computers do this with some form of open statement
that names the file and makes it available for processing (block 1). Once the
file is available for processing, the program will read the data elements from
DATA statements just as in the past (block 2). Then the program checks for
end-of-data (block 3); if there is data, it will write a record to the output file
for each part in the inventory (block 4). Once all the data has been read and
written you must tell the computer you are finished with that file. This is usually
done with some form of close statement (block 5). At this point the
computer does any necessary end-of-file processing then terminates the
program (block 6).

With a fundamental understanding of the problem and a flowchart as a
guide, we are ready to write a program to create the master file: The program
could be written as shown in figure 7-1.

The DATA SAVE statement in line 10 opens the output file, making it
available for the program to write data out to it, and assigns it the file name,
INVFILE. The #2 tells the computer what storage medium is being used. Lines

Figure 7-1.—Flowchart and program to create a master file.

7-4



Chapter 7—STORING AND RETRIEVING PROGRAMS AND DATA

20 through 50 form a loop which reads data from DATA statements and writes
records to the master file until all the data has been read and written. In line
20, the READ statement reads the data from the DATA statements, and line
30 tests the data for the “ENDDATA” record which indicates end-of-data.
If it is not end-of-data, then the DATA SAVE statement in line 40 writes
a record containing the values for the variable names listed. It writes the record
onto the master file (INVFILE). The GOTO statement in line 50 transfers
control back to line 20 to repeat the reading, testing, and writing of records
until the READ statement reads the “ENDDATA” record and the IF-THEN
test proves true. Then the program transfers control to line 60 which writes
an end-of-file character on the master file and closes the file. The next
executable statement is 999 which terminates execution of the program.

For simplicity we have included only the data for one record in each DATA
statement. This makes it easier to visualize what a record looks like. It also
makes it easier to correct any data that is keyed incorrectly. Notice also that
the DATA statements begin with much higher line numbers. This separates
them from the program steps and allows room for expanding the program
or for the addition of data without having to renumber the program. Using
“ENDDATA” to indicate end-of-data rather than using a FOR-NEXT loop
allows more flexibility in handling various amounts of data and eliminates
having to know how much data will be processed.

In this example, the DATA SAVE statements are used to open a file and
write a file name on it (line 10), write data to the output file (line 40), and
write an end-of-file indicator on the file (line 60). Since the file processing
statements will probably be different on the system you are using, you will
have to refer to the user’s reference manual to determine what statements
perform these functions.

Once the master file has been created you might want to print it, either
to ensure that all items have been entered and entered correctly; or you may
wish to have a listing on which you can keep a tally of items sold and use
it when you update the master file. The following program could be used to
print the master file.

Example:

7-5



INTRODUCTION TO PROGRAMMING IN BASIC

In this program, the DATA LOAD statement, line 20, opens the master
file (INVFILE) and makes it available for processing. The PRINT statements
in lines 30 and 40 print the column headings. Lines 50 through 80 comprise
the loop which will control the reading and printing of the master file. The
DATA LOAD statement in line 50 reads the values for the variables and makes
them available for the PRINT statement to print. The IF END statement in
line 60 checks for end-of-file. At end-of-file, control is transferred to line 99
where the END statement terminates the program.

When reading a file and the end-of-file indicator is read, the computer
will detect it. If any future attempt is made to read from the file before it
is reopened, an end-of-file error message is printed and the computer stops
executing the program. When reading a file, the BASIC statement IF END
can be used to test whether the computer did, in fact, read the end-of-file
indicator. It also transfers control to any specified line number in a program.
For example, you could transfer control to a PRINT statement to print
summary totals, or transfer control to an END statement to terminate the
program as was done in this example. Depending on what computer you are
using, the IF END statement is normally placed either immediately following
or immediately preceding a read statement.

Now that we have created and printed the master file, we can now begin
to use it. For example, we’ll need to update the file so the on-hand quantity
for each item will be current and we’ll know when a particular item needs
to be reordered. The flowchart (figure 7-2, a foldout at the end of this chapter)
is a pictorial representation of the procedures required to solve the problem.
The problem solution has been divided into four parts:

1. Read the part’s data into arrays.
2. Update the quantity on hand.
3. Produce a list of items below stock level.
4. Create a new master file.

While some of these parts could have been combined, they were kept separate
for ease of understanding.

Study the flowchart and examine its four distinct parts. Part one consists
of blocks 1 through 4 which are used to read the parts data into arrays and
to accumulate a total count of the records in the file. This total will be used
to control successive FOR-NEXT loops.

Part two consists of blocks 5 through 12 which are the update portion.
This section allows you to select part numbers at random to be updated.
Using the part number entered in block 5, the FOR-NEXT loop compares
it to each part number in array P. When a match is found, the subscript X
equals the part’s relative position in the arrays and control is transferred to
block 11. Block 11 allows you to enter quantity sold. Block 12 uses the value
of X as the subscript to select the corresponding on-hand quantity, Q(X), to
be updated. Q(X) is used with the quantity sold, Q1, to compute the new
on-hand quantity. Then control is transferred back to block 5 for another
part number to be entered. If a match is not found, this means the entire
array has been searched in the FOR-NEXT loop, blocks 7 through 9, and
the part number (P 1) entered in block 5 did not match any part number in
the parts number array, P(X). Therefore, an error message is printed and
control is transferred back to block 5 to enter the corrected part number

7-6



Chapter 7—STORING AND RETRIEVING PROGRAMS AND DATA

or another part number. If no more updating is required, 9999 is entered and
block 6 tests this condition. If it proves true, control is transferred to block
13 which is the first block of part three.

Part three consists of blocks 13 through 17 which generate a list of parts
below stock level. Blocks 14 through 17 comprise a FOR-NEXT loop. Block
15 tests if the on-hand quantity is greater than the reorder-point quantity.
If this proves false, the part number, part name, and unit price of that part
is printed on the below stock level list. Block 17 tests for X equal to K. If
it is not equal, control is transferred to block 14 which increments the value
of X by one and continues searching the records for items to be reordered.
Once X is equal to K (the number of records in the file), control is
transferred to block 18, which is the first block of part four.

Part four consists of blocks 18 through 22 which create the new master
file. Blocks 19 through 21 comprise a FOR-NEXT loop which is used to
control the writing of records to the new master file. Block 20 writes the new
records onto an auxiliary storage medium; block 21 tests for X equal K. If
X-is not equal to K, control is transferred back to block 19 which increments
X by 1 and block 20 writes another master record. Once X is equal to K,
control is transferred to block 22 which closes the new master file and the
program is terminated, block 23.

Examine the program (figure 7-2) and see how the program coding
corresponds to the blocks in the flowchart.

In this program, lines 50 through 130 are used to read the master file into
the computer’s memory. Lines 150 through 300 are used to update the master
file. In line 190 the part number to be updated is entered; or if no more parts
are to be updated, 9999 is entered. Line 200 tests P1 for end of update data
(9999); if not, control goes to line 210 which is the beginning of a FOR-NEXT
loop that searches array P for a matching part number. If a matching part
number is not found, control is then transferred to line 240 which prints the
message, PART # NOT FOUND. If a matching part number is found,
control is transferred to line 260 which displays the data elements of the record
to be updated. Line 270 requests quantity sold to be entered. Line 290
computes new on-hand quantity by subtracting Q1 from Q(X). Then the GOTO
statement in line 300 returns control to line 180 which is a prompt to enter
another part number to be updated.

When no more parts records are to be updated, control is transferred to
line 340 which prints the heading for the below stock level list. Lines 350
through 380 comprise a FOR-NEXT loop which is used to search the on-hand
quantity and the reorder point quantity arrays. Line 360 tests the updated
on-hand quantity, Q(X), and the reorder point quantity, R(X), to determine
if Q(X) is greater than R(X). If it is, the data for another record is tested.
If it is less than or equal to R(X), the part number, part name, and unit price
are printed on the list. Once all parts have been tested for reorder criteria,
lines 400 through 470 write the updated master file to an auxiliary storage
medium.

In this program we chose to read all the data into arrays to allow updating
the parts records in any sequence, and to allow a part’s record to be updated
more than once in a single run. This will work for small data files. However,
for larger data files (those that cannot fit into memory) other processing
methods would be needed.

7-7



INTRODUCTION TO PROGRAMMING IN BASIC

SUMMARY

As you write programs to be used repetitively and to solve more complex
problems, the need for storing and retrieving programs becomes more
apparent. Although the specific statements for storing and retrieving programs
will vary on different computers, the concepts will be similar. Programs must
be assigned a name so they can be referenced and reloaded. A program name
is a series of characters used to identify a program. A system command, such
as SAVE, is used to store a program. To reload a program will require another
system command in which you specify the name of the program to be
loaded. Once a program is loaded into a computer’s memory, it is available
to be executed, changed, or listed.

The need for a method to store and retrieve data files becomes apparent
when the same files are to be used extensively. When data is stored in a
program, you are restricted in what can be done with it. This data cannot
be used with other programs and it would be very difficult, if not impossible,
to update. To eliminate these restrictions, data can be stored on auxiliary
storage media such as magnetic disk or tape. Data stored in this manner is
called a data file. A file consists of a group of related records and each record
consists of fields. A field is a specified area in a record used for a particular
category of data.

Most computers require a file processing statement to make a file ready
to be read or written. This is usually some type of open statement and
includes the file name and the tape or disk where the data will be written or
read. Once the file is opened, file processing statements are used to read data
from a storage medium into memory or to write data from memory to a storage
medium. Once you are through processing a data file, you must tell the
computer you are finished with that file. This is done with some type of close
statement.

Storing data independently from programs allows more flexibility. Data
stored in this manner can be used by different programs. It can be updated,
printed, or used to generate various reports.

The programming concepts presented in this text are fundamental; they
are intended to get you started in programming. As your knowledge and
experience increase, you will discover new and more sophisticated ways to
use the language to solve more difficult problems.

7-8



CHAPTER 7

EXERCISES

1. Draw a flowchart and write a program to create a file to keep
track of stock purchases. Use the file processing statements presented
in this chapter. The file should include a record for each stock purchased.
Each record should be composed of three data fields: name of
stock, purchase price per share, and number of shares bought.
Use the INPUT statement to enter the data for the file.

2. Four candidates are running for public office. To win, a candidate
must receive over 50% of the votes cast. Draw a flowchart and
write a program to accumulate total votes for each candidate and
determine if a candidate has won or if a runoff election is required.
Print the result and print each candidate’s name and total votes
for each. The file to be used as input is stored on tape or disk
and consists of records from six districts. Each record contains the
following fields:

1. Candidate number (1-4)—variable X

2. Candidate name—string variable N$

3. District number (1-6)—variable D

4. Number of votes—variable V

The records in the file are in no particular order.

7-9



7-10



CHAPTER 7

EXERCISE SOLUTIONS
The following flowcharts and programs present possible solutions to the

exercises.
1. Stock Purchase Flowchart and Program

7-11



INTRODUCTION TO PROGRAMMING IN BASIC

2. Election Results Flowchart and Program

7-12



Chapter 7—STORING AND RETRIEVING PROGRAMS AND DATA

7-13



INTRODUCTION TO PROGRAMMING IN BASIC

You may have noticed that the data field for candidate number contains
a 1, 2, 3, 4, and that this code could be used as a subscript to reference the
correct locations in the arrays. To modify the program to take advantage of
this, you could replace statements 90 through 220 with the following statements:

90 LET K(X) = K(X) + V

100 LET N1$(X) =

110 GOTO 70

When the value of candidate

N$

number is 1, the number of votes cast for
candidate 1 would be added to K(l); when it’s 2, the number of votes cast
for candidate 2 would be added to K(2); and so on.

When you are defining data and data codes, it is a good idea to think about
how you are going to use the data in the programs. You maybe able to save
yourself coding time.

7-14



THIS PAGE INTENTIONALLY LEFT BLANK.

7-15



Figure 7-2.—Parts inventory flowchart and program.

7-16



Figure 7-2 cont’d.—Parts inventory flowchart and program.

7-17


	CHAPTER 7

